NOAA Technical Memorandum OMPA-4

GROWTH RATES OF BENTHIC ALGAE AND INVERTEBRATES IN PUGET SOUND: I. LITERATURE REVIEW, AND II. FIELD STUDIES ON LAMINARIA AND NEREOCYSTIS

Herbert H. Webber

Boulder, Colorado February 1981

noaa

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Office of Marine Pollution Assessment

GC 1080 N62 N62

NOAA Technical Memorandum OMPA-4

GROWTH RATES OF BENTHIC ALGAE AND "
INVERTEBRATES IN PUGET SOUND:

I. LITERATURE REVIEW, AND II. FIELD

STUDIES ON LAMINARIA AND NEREOCYSTIS

Herbert H. /Webber

Huxley College of Environmental Studies Western Washington University Bellingham, Washington 98225

Boulder, Colorado February 1981

UNITED STATES DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

James P. Walsh, Acting Administrator

81 1475

Office of Marine Pollution Assessment CENTRAL R.L. Swanson, LIBRARY Director MAY 7 1981 N.O.A.A. U. S. Dept. of Commerce

Completion Report Submitted to MESA PUGET SOUND PROJECT OFFICE OF MARINE POLLUTION ASSESSMENT

by

Huxley College of Environmental Studies Western Washington University Bellingham, Washington

DISCLAIMER

Mention of a commercial company or product does not constitute an endorsement by National Oceanic and Atmospheric Administration. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

TABLE OF CONTENTS

																					F	age
List List Abst 1. 2.	of Figure of Table of Apper ract Introduc Methods	res es ndices tion .	· · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·			· ·	· · · · · · ·	•••••		•	· ·	•••••			••••••	•••••	• • • • •	•	iv v vi vii 1 2
	2.1 2.2	Litera Field S	ture Se Studies	earch	1.	 	:	:	 	•	•	:	•			•		•	•	•	•••	2 2
		2.2.1 2.2.2 2.2.3 2.2.4	Study Lamina Calcul Nereod	Area aria latic cysti	a and Grow Ons Ls Gr	1 Ta vth 	ggi Stu h S	idio Stud	es dies	•			•		•		•••••		•	•	• • •	2 2 4 4
3.	Results				•••		•	•		•	•	•	•	• •	•	•	•	•	•	•		7
	3.1	Literat	ture Re	eview			•	•	• •	•	•	•	•	• •		•	•	•	•	•	•	7
		3.1.1 3.1.2 3.1.3 3.1.4	Brown Red Al Angios Invert	Algae Igae sperm cebra	ne . 	 		•	· ·		•		• •		••••••			•		•		7 7 8 8
	3.2	Field S	Studies	s of	Lam	inar	ia	and	ł <u>Ne</u>	ere	200	ys	tis	<u>.</u>		•		•	•	•	•	12
		3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Intert Subtic Calcul Calcul Nereoc	idal lal <u>l</u> latic latic	Lamin Damin Damin Damin Lis 11	nina nari E In E In netk	ria a s cre cre ean		accl char e in e in	nar rir n A n H	re Bio	F F ma	Fi ron foi ss	fo	d 1 E10 r 1	Elcong sac	gat sa	at ic ar	ic in ha	n	.na	12 12 12 17 17
4.	Discussi	on									•		• •	• •			•	•	•	•	•	25
	4.1 4.2 4.3 4.4	Evaluat Growth Other I Nereocy	tion of in <u>Lan</u> Puget S ystis S	the ninar Sound Stipe	e Teo ia s Lar Elo	chni sacc nina onga	que har ria tic	ina Gina On	<u>a</u> . cowi	th	Da	ita	• •		•••••					•		25 25 26 26
5. 6. 7.	Acknowle Reference Appendice	dgments es es	· · · · · ·	· ·	· ·	· ·	•	•			•	•	• •		•	•	•	•	•			27 28 33

LIST OF FIGURES

		Page
Figure 1	Location of <u>Nereocystis</u> and <u>Laminaria</u> sample sites	3
Figure 2	Carapace width (inches) and age of the Dungeness crab	11
Figure 3	Mean daily hole migration of intertidal and subtidal Laminaria saccharina	14
Figure 4	Mean daily increase in area of intertidal and subtidal Laminaria saccharina	16
Figure 5	Daily increase in biomass of Laminaria saccharina	19
Figure 6	Mean stipe length of <u>Nereocystis</u> <u>luetkeana</u>	21
Figure 7	Mean daily stipe elongation of <u>Nereocystis</u> <u>luetkeana</u>	22

LIST OF TABLES

Page

Table l	Regression of size measurements on wet weight for Laminaria saccharina	5
Table 2	Regression of size measurements on wet weight for Nereocystis <u>luetkeana</u>	6
Table 3	Summary of data for intertidal <u>L</u> . <u>saccharina</u> 1	3
Table 4	Summary of data for subtidal <u>L</u> . <u>saccharina</u>	5
Table 5	Summary of length data for <u>L</u> . <u>saccharina</u>	8
Table 6	Summary of stipe growth in <u>Nereocystis</u> <u>luetkeana</u> 2	0
Table 7	Summary of blade growth data for <u>Nereocystis</u> <u>luetkeana</u>	3
Table 8	Comparison of mean width of <u>L. saccharina</u> from July 7, 1978 and August 16, 1978 at 10 and 20 cm from stipe	4

v

LIST OF APPENDICES

Page

Appendix:

1.	Tag number, width at 10 cm, hole elongation (cm), and area (elongation x width at 10 cm) for inter- tidal Laminaria saccharina	33
2.	Tag number, width at 10 cm (W $_{10}$), hole elongation in cm and area (elongation x width at 10 cm) for subtidal <u>L</u> . <u>saccharina</u>	34
3.	Tag number and total frond length for subtidal <u>L</u> . <u>saccharina</u>	41
4.	Tag number and stipe elongation (cm) for <u>Nereocystis</u> <u>luetkeana</u>	44
5.	Tag number, total length of fronds (cm), total hole migration (cm) for <u>Nereocystis luetkeana</u>	45

ABSTRACT

A literature search on growth rates of benthic algae and invertebrates in Puget Sound showed relatively little is known about growth and productivity. Field studies were initiated to examine growth in populations of intertidal and subtidal <u>Laminaria saccharina</u> and subtidal <u>Nereocystis luetkeana</u> from Shannon Point, Puget Sound. Based on the movement of holes punched 10 cm from the stipe, maximum growth rates of <u>L. saccharina</u> were observed during May and June (approximately 100 g wet wt. biomass per day). Evidence indicated growth also occurred beyond 10 cm from the stipe and that values must be considered conservative.

Stipes of <u>N</u>. <u>luetkeana</u> started growth late in April. Stipe growth was most rapid in May and June (8-9 cm per day), and decreased through to September. Biomass production in August and September was approximately 250 g wet weight per day.

1. INTRODUCTION

From 1972 to 1979 several extensive studies on the structure of intertidal and shallow subtidal benthic communities of the Puget Sound region have been made (Battelle Northwest, 1974, DOE 1978, MESA 1978). These studies have been primarily motivated by the potential of oil spills, and have emphasized species occurrences, numbers of individuals and biomass. In order to evaluate the sensitivity of these benthic communities to serious environmental disruption, such as an oil spill, their functional characteristics also need to be described. One of the most important functional characteristics of these communities is the flow of energy (productivity) through trophic levels. Growth and growth rates are important components of the analysis of productivity.

To evaluate the knowledge on growth and growth rates of benthic communities in Puget Sound a literature search of growth in algae, marine plants, and invertebrates was conducted. As well, field studies on growth in Laminaria and <u>Nereocystis</u> were initiated. As is evident in the results, the literature search showed relatively little is known of growth and productivity of either benthic algae or invertebrates. In many cases only estimates of longevity of animal species was available. In only a few cases were annual productivity rates determined.

Two important and convenient algae species in the benthic communities of Puget Sound are <u>Nereocystis luetkeana</u> and <u>Laminaria saccharina</u>. <u>N. luetkeana</u> is convenient because, since it is an annual, estimate of annual productivity can be made by determining maximum standing crop. <u>Nereocystis</u> has been conservatively estimated (Rigg, 1915) to have a maximum standing crop in Puget Sound of 390,000 tons (this area included U.S. waters of the Strait of Juan de Fuca and San Juan Islands).

In this study stipe elongation of N. <u>luetkeana</u> was followed at a site in Puget Sound (Shannon Point) from May to September 1978 and February to May 1979. Blade elongation was followed for a short period in August and September 1978.

Laminaria is a convenient genus to evaluate growth rate because the meristematic area between stipe and frond is responsible for the majority of growth (Parke, 1948). Parke showed the greatest rate of growth in L. <u>saccharina</u> was in the proximal 25 cm of the frond. Mann (1973) followed growth in a closely related species (L. <u>longicruris</u>) by following the migration of holes punched just distally (10 cm) of the meristematic tissue.

In this study growth of <u>L</u>. <u>saccharina</u> was followed in an intertidal and subtidal area of Puget Sound from May 1978 to June 1979.

2. METHODS

2.1 Literature Search

A number of literature sources were examined, including: Beak, 1975 -Oil Pollution and the Significant Biological Resources of Puget Sound; Collias and Andreeva, 1977 - Puget Sound Marine Environment, An Annotated Bibliography; The Oceanographic Institute, 1975-78 - Compendium of Current Environmental Studies in Puget Sound and Northwest Estuarine Waters; DOE, 1977 - Washington Coastal Areas of Major Biological Significance.

As well, a computer search for data on growth rates of invertebrates and algae in Puget Sound was made from the following sources: NTIS, Biological Abstracts, Oceanic Abstracts, Sci-Search, and Aquatic Science and Fisheries Abstracts.

Finally, individuals in academic institutions and state agencies were contacted for growth data.

2.2 Field Studies

2.2.1 Study Area and Tagging

The study area was just easterly of Shannon Point (Fig. 1). Algae in two areas were examined: A group of intertidal <u>L</u>. <u>saccharina</u>; and a group of <u>L</u>. <u>saccharina</u> located at approximately 3-5 m depth below mean low water.

Algae were tagged with numbered plastic tags obtained from Hewitt Plastic Co. Tags were initially attached to the algae by stainless steel wire. However, with time, the wire tended to abrade the tissue of the plant. In an attempt to increase tag visibility and to keep the tag from the holdfast area, tags were attached to styrofoam balls (10-15 cm diameter). However, the effect of the current on the balls resulted in unacceptable abrasion to algae tissue. Finally plastic clips were used to attach tags to the algae. No damage was noted using this method.

2.2.2 Laminaria Growth Studies

The method used to estimate growth rates was that described in Mann (1972). Holes were punched just distally of the meristematic region (10 cm) and the rate of migration was determined by periodic observation.

Intertidal L. saccharina. In May 1978, 30 algae were tagged, holes (approximately 5 mm diameter) were punched 10 cm from the stipe, and blade width at 10 cm recorded. Algae were checked every two weeks. Distance of the hole migration, and width at 10 cm were noted. New holes were punched as necessary. This experiment was terminated on July 5, 1979, because the L. saccharina were dead or badly damaged because of excessive exposure due to daytime low tides. At each observation period, when tagged algae could not be located, new plants were tagged to keep sample size at 10 or more algae.

Figure 1. Location of <u>Nereocystis</u> and Laminaria sample sites.

Subtidal L. saccharina. In June 1968, a 50 m transect line was located at the 3 to 5 m depth (below 0.0 tide). Approximately 50 algae adjacent to the line were tagged. At each observation period, the migration of the hole and blade width at 10 cm from the stipe were taken. New holes were punched as necessary. At some observation times (November 1978 to April 1979) blade length was also recorded. The experiment was terminated June 1979.

2.2.3 Calculations

Wet Weight Correlations. In April 1978, 29 L. saccharina of all size classes were collected and the length, width at 10 cm, and wet weight recorded. In May 1979 the procedure was repeated with 30 L. saccharina. Various correlations of measurements to wet weight were made (Table 1). Linear regression between wet weight and each of length, width at 10 cm, and area (cm²) gave acceptable correlation, but the intercept was unacceptable. However, a power curve ($y = ax^b$) where y was wet weight and x was length gave an acceptable correlation and an intercept near zero (Table 1).

Estimation of Biomass. The best correlation between wet weight and size was the power curve relationship between wet weight and length (Table 2). To estimate biomass accumulation for those observation periods in which algae lengths were available, the increase in length (by hole migration) was added to the initial length to calculate the final length. This method avoids the problem of erosion of the ends of the frond lowering biomass values.

2.2.4 Nereocystis Growth Studies

In June 1979 a 50 m transect line was located at 5 m depth (Fig. 1). Approximately 40 algae were tagged (see tagging). Stipe length was measured every two weeks until September 1978.

In August 1978, 14 N. <u>luetkeana</u> were tagged at the surface from a boat, and a hole (approximately 5 mm diameter) was punched at 10 cm from the bulb. Hole migration was followed until September 8, 1978. After this time recurring storms removed many N. <u>luetkeana</u> from the study site, making consecutive observations impossible. Further tagging was not attempted because of lack of algae.

Correlations of size measurements with wet weight of the total algae were conducted in May 1978 (25 algae) and August 1978 (22 algae). Stipe length, mean frond length, and wet weight were recorded. Linear regressions of mean length, and total length vs. wet weight gave unacceptable correlation coefficients (Table 2). The power curve ($y = ax^b$) was fitted to mean blade length vs. wet weight. A correlation coefficient of 0.97 with intercept of 0.03 was obtained.

Table 1. Regression of size measurements on wet weights for Laminaria saccharina. Twenty-nine algae were collected April 1978; 30 algae were collected in March 1979. The power curve ($y = ax^b$) was fitted on the length vs. wet weight of both groups of algae combined.

I.	April 1978 (n = 29)		
	width (10 cm) vs. wet wt:	weight = $-4.1 + 4.6$ width,	$r^2 = 0.79$
	length vs. wet wt:	weight = $-237.5 + 4.8$ width,	$r^2 = 0.78$
	area vs. wet wt:	weight = -46.8 + 0.16 area,	$r^2 = 0.87$
II.	March 1969 $(n = 30)$		
	width (10 cm) vs. wet wt:	weight = $-139.2 + 18.4$ width,	$r^2 = 0.69$
	length vs. wet wt:	weight = $-54.2 + 2.4$ length,	$r^2 = 0.79$
	area vs. wet wt:	weight = $-63.9 + 0.2$ area,	$r^2 = 0_{\circ}90$
III.	Power Curve $(n = 59)$		
	length vs. wet wt:	weight = 0.03 length (1.86),	$r^2 = 0.90$

5

Table 2. Regression of size measurements on wet weight for <u>Nereocystis</u> <u>luetkeana</u>. Twenty-five algae were collected in May 1978 and 22 in August 1978. Both groups were combined.

I. Linear Regressions

Total blade length vs. wet weight:

Weight = -10.9 + 0.33 total length, $r^2 = 0.90$

Mean blade length vs. wet weight:

Weight = -1,342.4 + 19.1 length, $r^2 = 0.90$

II. Power Curve

Mean blade length vs. weight:

Weight = 0.02 length (2.1), $r^2 = 0.97$

3. RESULTS

3.1 Literature Review

3.1.1 Brown Algae

a. Laminaria. Growth data for Laminaria are treated in the discussion section of this report (4.2).

b. <u>Nereocystis</u>. Growth of the sporophyte of this annual algae begins in early spring. Stipe growth is rapid with the following rate reported for <u>N</u>. <u>luetkeana</u> in Puget Sound: Frye (1906) - 10 inches per day; Hartge (1928) -1 inch per day; Sheldon (1915) - 1 inch per day; and Scagel (1947) - 6 cm per day. For the California coast, Nicholson (1970) reported a rate of up to 6 cm per day for immature algae.

Once the stipe reaches the surface, its growth slows or ceases altogether (Nicholson, 1970). Hurd (1916) reported that the elongation of the stipe was more rapid for N. luetkeana in deeper water than those in shallower water.

Light has been found to be the most important factor in sporophyte growth (Vadas, 1972) although temperature also showed an effect. For algae from 0-20 m below low tide, growth was greatest at 15°C for the first three weeks of sporophyte development. After 6.5 weeks sporophyte growth was maximum at 10°C.

Field measurements of growth of fronds of <u>N</u>. <u>luetkeana</u> has been reported by Fallis (1915). Growth was maximum in the proximal two inches of the frond from the stipe. Fallis reported frond growth of 1.5 to 2 inches per day during the summer.

Since <u>Nereocystis</u> is an annual, estimates of annual production can be made by determining maximum standing crop. Rigg (1915) estimated that in late summer Puget Sound, the San Juan Archipelago, the Strait of Juan de Fuca and that part of the Strait of Georgia in U.S. waters had a maximum standing crop of 390,000 tons. Rigg cautioned that in his view the estimate was conservative.

More recent data on standing crop of <u>N</u>. <u>luetkeana</u> are available from the coast of British Columbia. Coon and Field (1976) report part of the results of an inventory program for British Columbia coastal waters. Data are area specific. As an example, densities of 3.1 kg/m^2 biomass density were given for kelp beds in Nootka Sound.

3.1.2 Red Algae

a. <u>Gigartina</u>. Chan (1972) reported that the growth of <u>Gigartina</u> exasperata in San Francisco began in spring and that at 15° C three months were required to produce upright blades from carpospores. For <u>G. papillata</u>, Chan (1972) reported that growth also began in spring months.

For <u>G</u>. <u>stellata</u> from New Hampshire, Burns and Mathieson (1972) reported growth to begin in the period of February to May, with maximum biomass produced in August and September. Most rapid growth occurred with increasing summer temperatures. No data are reported for Puget Sound.

b. <u>Iridaea</u>. Fralick (1971) found the optimal growing season of <u>Iridaea</u> <u>cordata</u> in the Puget Sound region to be from March to September with a peak in August. Optimal growth occurred at a depth of -3 m below MLLW. In tank culture at 14-15°C, 40 kg of wet weight, <u>I. cordata</u> were produced in a 140 day period (Waalund, 1974).

In a study in Strait of Georgia waters, Austin et al. (1973) found a biomass of 170,000 kg along a 30 mile stretch of beach on the eastern shore of Vancouver Island (Kye Bay).

The standing crop of <u>I</u>. <u>cordata</u> in the Puget Sound region is not adequate to support a commercial harvest and culture procedures have been developed by the Washington State Department of Natural Resources (Mumford, 1977, 1978). Using these culture procedures, Mumford (1978) reports annual standing crop yields of between 1435 and 4920 g dry matter/m².

3.1.3 Angiosperms

a. Zostera. Zostera marina is estimated to cover about 9% of the bottom of Puget Sound or some $4.5 \ge 10^8 \ m^2$ (Phillips, 1974). Phillips also found that seeds germinated in June while new turions and leaves started growth in February. Annual production was estimated by doubling the maximum standing crop (found from June to September). Phillips (1974) calculated that eelgrass beds fixed 1.5 g carbon/m²/growing season day (15 hrs.) resulting in an annual production of 187-1078 g/m². Phillips also estimated that the annual production of Z. marina was $4.8 \ge 10^5$ metric tons for all of the Puget Sound region.

3.1.4 Invertebrates

a. Polychaetes

1. <u>NEREIS</u>. Moore et al. (1974) reported for <u>N</u>. <u>vexillosa</u> from the North Pacific, a life span of four years with sexual maturity reached during the third year.

2. <u>PECTINARIA</u>. This genus is most commonly found in Puget Sound at depths greater than 100 m (Nichols, 1975). Nichols described a mean life span of six years. Nichols also reported an annual production of 1.4 to 1.8 g/c/m² for Pectinaria. Growth rates at various stations differed.

b. Bivalves

1. <u>CRASSOSTREA</u>. Chew (1961) found that growth in <u>Crassostrea</u> gigas slowed or stopped below 10°C. Growth began when water temperature reached 12°C. Growth was maximum in periods of highest temperature.

2. CLINOCARDIUM. C. nuttali has a life span of 5 to 7 years (Houghton, 1973; Qualye and Bourne, 1972).

3. MACOMA. Juvenile M. nasuta held 30 days under laboratory conditions

showed 24.1 mm increase in shell length (Hylleberg and Gallucci, 1975). Under field conditions, Gallucci and Hylleberg (1976) found greater growth of M. <u>nasuta</u> in "closed" areas compared to "open" areas of Garrison Bay, San Juan Island. "Open" areas were characterized by coarse sediment while "closed" areas were fine silt and clay. Average changes in shell length at the two sites over a 40 day period were:

	Small size	Medium size	Large size
"closed" area	4.1 cm	0.4 cm	0.15 cm ·
"open" area	2.7 cm	0.7 cm	0.60 cm

4. <u>MYA</u>. Houghton (1973) reported a life span of 8-9 years for <u>M</u>. <u>arenaria</u> while Moore et al. (1974) reported a life span of 7 years. Swan (1952) found that the <u>M</u>. <u>arenaria</u> grew 1.5 times faster in sand than in a mud/gravel/shell mixture. Animals from the sand had shells that were lighter in weight than those from a mud/gravel/shell mixture.

5. <u>MYTILUS</u>. Houghton (1973) reported a life span for <u>M</u>. <u>edulis</u> of 8 years. Moore et al. (1974) reported a life span of 4 years. For <u>M</u>. <u>californianus</u> Dayton (1970) found that mussels exposed to wave agitation grew faster than those in quiet waters.

6. <u>PANOPE</u>. <u>P. generosa</u> (the geoduck) is long lived with a life span in excess of 10 years, with males spawning after three, and females after four years (Anderson, 1971). Growth is relatively rapid for the first few years with clams adding approximately 30 mm shell length per year (Goodwin, 1973).

Anderson (1971) reported that clams at the end of their first year averaged 10 g, at their third year 300 g, and at the end of ten years, 1.6 kg. These data are similar to those of Goodwin (1973) who found it took 8 years for the first 10 cm of shell length (450 g weight) and by 10 years clams weighed around 900 g. Goodwin also noted that once 10 cm size was reached growth ceased or was very much reduced.

7. <u>PROTOTHACA</u>. Qualye and Bourne (1972) reported the life span of <u>P</u>. <u>staminea as 10 years</u>. Houghton (1973) reported 12 years. In an examination of growth of <u>P</u>. <u>staminea</u> at Kiket Island, Houghton (1973) found that there was increased growth at lower tide levels and that the growth rate was lower on the south side of the island than on the north. On the south side there was a standing crop of around 20 g/0.25 m² with an annual productivity of 4.3 g/0.25 m²/yr. On the north side there was a standing crop of around 250 g/0.25 m² and an annual productivity of 45.6 g/0.25 m²/yr. Values varied according to tide height.

8. <u>SAXIDOMUS</u>. Houghton (1973) reported a life span for <u>S</u>. <u>giganteus</u> of 13 years with reproductive maturity at 3-5 years. An annual productivity of 29 g/m²/yr. was found for areas with a standing crop of 270 g/m².

9. <u>TRESUS.</u> <u>T. capex</u> has a life span in excess of 15 years (Bourne and Smith, 1971). The authors also reported the size (shell length) of these clams for various ages: 1 year, 28 mm; 3 yrs., 70 mm; 5 yrs., 100 mm (175 g), 7 yrs., 116 mm; 9 yrs., 125 mm; 11 yrs., 130 mm (420 g); 13 yrs., 143 mm; 15 yrs., 150 mm. Sexual maturity was reported to occur at 3 years of age.

9

10. VENERUPIS. The introduced V. japonica was reported by Houghton (1973) to have a generally higher rate of growth than the native P. staminea when the two species were found together (Houghton, 1973). Nosho and Chew (1971) reported the following growth data (shell length) for V. japonica: 1 yr., 24 mm; 2 yrs., 36 mm; 3 yrs., 40 mm; and 4 yrs., 44 mm. The authors also reported that most of the growth occurred in the summer and early fall.

c. Gastropods

1. <u>HALIOTIS</u>. The abalone <u>H</u>. <u>kamtschatkana</u> grows slowly. Mollet (1978) reported a minimum of four years to reach a shell length of 10 cm. Qualye (1971) gave shell length data for <u>H</u>. <u>kamtschatkana</u> from 1 to 10 years: 1 yr., 2.0 cm; 2 yrs., 3.5 cm; 3 yrs., 6.0 cm; 4 yrs., 6.8 cm; 5 yrs., 8.2 cm; 6 yrs., 9.0 cm; 7 yrs., 9.8 cm; 8 yrs., 10.5 cm; 9 yrs., 11.0 cm; 10 yrs., 11.5 cm. The first spawning was reported to occur in the third year.

d. Cephalopods

1. LOLIGO. Trumble (1973) reported a life span of 3 years for squid from the Northeastern Pacific Ocean.

e. Crustaceans

1. <u>CANCER</u>. The Dungeness crab <u>C</u>. <u>magister</u>, has a maximum age of 10 years with a probable life span of 8 years (MacKay, 1942). MacKay also noted that sexual maturity is reached by the female in the fourth year, although Prentice (1971) reported that females matured in the second year. The relationship between carapace width and age (MacKay, 1942) is given in Fig. 2.

Butler (1961) for <u>C</u>. <u>magister</u> from British Columbia gave the following age versus carapace width data for males: 1 yr., 24 to 31 mm; 2 yrs., 97 to 119 mm; 3 yrs., 147 mm; 4 yrs., 176 mm; 5 yrs., 207 mm. Growth in females for the first two years was similar to that of males. After two years, however, growth was slower.

Mayer (1973) found that the growth rate for <u>C</u>. <u>magister</u> around Kiket Island and Similik Bay was less than described for <u>C</u>. <u>magister</u> off the west coast of Washington State.

2. ORCHESTIA. Moore et al. (1974) reported a life span of less than one year for 0. traskiana from the North Pacific.

3. <u>PANDALUS</u>. Dahlstrom (1970) gave a life span of 2-4 years for <u>P</u>. jordani. Butler (1970) gave a life span of 4 years for <u>P</u>. <u>platyceros</u>. For <u>P</u>. <u>hypsinotus</u> Butler (1964) reported that shrimp at 1.5 years were 124 mm in length and 10.2 gm. At 3 years length was 130 mm and weight 12.7 gm.

f. Echinoderms

1. <u>DENDRASTER</u>. Birkland and Chia (1971) reported 9 years as the maximum age of the sand dollar, <u>D. exertricus</u>. Growth was steady until the fifth year (8-9 cm test length). After the fifth year growth was much reduced. The authors reported a substrate effect on growth. At Alki beach (Seattle) growth

Figure 2. Carapace width (inches) and age of the Dungeness crab <u>Cancer</u> <u>magister</u>. (MacKay, 1942)

11

in those areas that were sandy was more rapid in young and slower in adults than in those areas that had sand between cobbles and clay 2-10 cm below the surface.

2. <u>MEDIASTER</u>. Birkland et al. (1971) reported four years to sexual maturity for the sea star, <u>M</u>. <u>aegualis</u>. In field conditions a growth of 2 mm per month was noted from November to January while 0.5 mm growth per month was noted from September to March. Under laboratory conditions growth of 0.3 to 0.4 mm per month was noted. For adult <u>M</u>. <u>aegualis</u> (12-14 cm size) growth under field conditions was found to be 0.7 to 1.1 mm per month.

3. <u>STRONGYLOCENTROTUS</u>. Moore et al. (1974) reported a life span of 4 years for the urchin S. drobachiensis.

g. Brachiopods

1. <u>TEREBRATALIA</u>. Paine (1969) reported a maximum age of 9-10 years for the lampshell T. transversa. Animals of 5 years of age averaged 43 mm in width.

3.2 Field Studies of Laminaria and Nereocystis

3.2.1 Intertidal Laminaria saccarina; Frond Elongation

Data on length of migration of punched holes and frond width at 10 cm are given in Table 3. A graph of the mean daily hole migration is shown in Fig. 3. There was little change in the first two weeks of June with mean hole migration of around 1.2 cm per day. In the latter two weeks the daily hole migration dropped markedly to around 0.5 cm per day. After the end of June no algae were available to continue the experiment. It is tempting to attribute this decrease in daily hole migration to the "summer burn off" that reduces intertidal algae during summer months. However, Fig. 3 shows that subtidal algae also showed a sharp decrease in daily distance of hole migration during this time.

3.2.2 Subtidal Laminaria saccharina; Frond Elongation

Data on migration of punched holes and width at 10 cm for subtidal L. saccharina are given in Table 4. The mean daily hole migration is shown in Fig. 3. A distinct seasonal pattern of hole migration is evident. Migration of around 1 cm per day was noted at the beginning of July. Daily elongation steadily decreased through to October to a low of less than 0.05 cm per day. Low values were observed until early January when daily elongation started to increase. Maximum daily elongation was noted in March with values of around 2.5 cm per day elongation.

3.2.3 Calculation of Increase in Area for L. saccharina

Conservative estimates of daily increase in area for intertidal and subtidal L. saccharina are given in Tables 3 and 4 and Fig. 4. Data are similar to those in Fig. 3, that is for subtidal L. saccharina the daily increase in area decreases from June through December. Starting in January there is a rapid rise in the daily increase in areas that peak in May. Standard deviations (Fig. 4) show that these seasonal changes are significant (p = 0.05).

	May 25-June 7	June 7-June 21	June 21-July 5
n	12	13	6
mean width	15.2	15.4	16.5
mean hole migration	15.4	17.0	7.7
mean area	224.8	256.5	199.3
no. of days	13	14	14 *
mean elongation/day (cm)	1.2	1.2	0.6
S	0.7	0.7	0.4
mean area/day (cm ²)	17.4	18.6	14.2
S	9.5	9.0	5.8

Table 3. Summary of data for intertidal L. saccharina. Data for individual algae are given in Appendix 1. Area was calculated by using elongation and width at a point 10 cm from the stipe. S is the standard deviation.

Figure 3. Mean daily hole migration of intertidal and subtidal Laminaria saccharina. Open circles are intertidal L. saccharina. Closed circles are subtidal L. saccharina.

		þ	0		-		-			
	June 16- June 28	June 28- July 7	July 7- July 19	July 19- Aug. 16	Aug.30- Sept.20	Sept.20- Oct. 6	. Oct.6- Oct.27	Oct.27- Nov.14	Nov.14- Dec. 1	Dec. 1- Dec. 15
u	22	10	30	31	19	18	19	24	19	15
mean width	22.8	26.0	21.0	21.6	17.0	16.4	14.9	16.3	15.0	14.9
mean elongation	13.4	7.6	13.0	7.9	10.6	5.2	3.5	0.5	0.53	1.6
mean area	294	185	162	181	163	69	49	6.2	5.4	17.6
# of days	12	6	12	28	21	16	21	18	17	14
elongation/day	1.12	0.84	0.68	0.29	0.51	0.35	0.17	0.03	0.04	0.12
std. deviation	0.62	0.43	0.35	0.14	0.38	0.30	0.13	0.06	0.06	0.20
area/day	24.5	20.5	13.5	6.4	5.9	4.8	2.6	0.4	0.4	1.5
std. deviation	15.8	9.3	7.2	3.7	4.0	3.7	1.8	0.8	0.6	1.7
	Dec.15- Jan.6	Jan.6- Jan.25	Jan.25- Feb. 8	Feb. 8- Feb.24	Feb.24- Mar. 8	Mar. 8- Mar.26	Mar.26- April 7	Apr.7- May 20	May 20- June 7	
п	11	7	17	17	17	20	20	16	15	
mean width	1	11.6	12.1	13.4	14.6	20.1	18.4	22.7	20.7	
mean elongation	2.2	0.43	7.2	14.9	12.8	17.5	28.0	96.0	31.9	
mean area	I	4.43	88.5	206.5	194.9	345.9	510.5	2,098.6	670.9	
# of days	22	19	14	16	12	18	12	43	18	
elongation/day	0.10	0.02	0.51	0.93	1.06	0.97	2.33	2.25	1.77	
std. deviation	0.09	0.03	0.27	0.28	0.30	0.32	0.62	1.20	0.44	
area/day	I	0.2	6.3	12.9	16.2	19.2	42.5	48.8	37.3	
std. deviation	I	0.3	3.8	5.8	6.7	6.7	15.8	24.5	12.7	

Figure 4. Mean daily increase in area of intertidal and subtidal Laminaria saccharina.

With appropriate data on wet weight it would be possible to estimate daily increases in biomass from area data. Linear regression curves of frond area to wet weight gave reasonable correlation coefficients (Table 1). However the Y intercept values indicated that for small values of area (as would be used to estimate growth) erroneous estimates of algae biomass might be made. If data were available on wet weight of the first 10-30 cm of fronds of <u>L</u>. <u>saccharina</u> the biomass could be calculated using these data.

3.2.4 Calculation of Increase in Biomass for L. saccharina

Length of L. saccharina were taken on algae during this period of December 1978 to June 1979 (Table 5). For this period daily increases in biomass were estimated using the regression of wet weight to the power curve of length (see methods). The results are shown in Fig. 5. The values of daily increase in grams of wet weight followed closely the curves of both increase in area (Fig. 4) and hole elongation (Fig. 3). One difference in the curves was that in the first period of the study (June 1979) both elongation and area showed a decrease from previous values, whereas biomass was greater.

3.2.5 Nereocystis luetkeana

a. Stipe Elongation. The first phase in the analysis of growth of <u>Nereocystis</u> <u>luetkeana</u> was to follow elongation of the stipe (Table 6). Figure 6 shows the mean stipe length from June 5 to September 8, 1978. During this time stipe length increased from around 250 cm to 600 cm. Data for algae from the spring of 1979 are also shown in Fig. 6. In May 1979 stipe length was around 75 cm, rapidly increasing to around 175 cm by May 17. Observation of the site during the period of February to April 1979 showed no sporophyte growth until the end of April.

Although mean stipe length continued to increase through to September 1978 (Fig. 6) the rate of increase slowed during this period. Fig. 7 shows the mean daily stipe increase through the study period. Values ranged from a high of between 7 and 9 cm per day in May and June to approximately 2 cm per day elongation in August and September.

b. Blade Elongation. Starting August 9, elongation of blades was followed by observing hole migration. Values were estimated for August 24 and September 8 (Table 7). Storms and resulting loss of algae after this time prohibited further measurement of elongation. Table 8 gives the data on blade elongation in N. luetkeana.

Date	Biomass	Number of days	Daily biomass
December 1	17	14	1.2
December 15	57	22	2.6
January 6	0	19	0
January 25	155	14	11.1
February 24	331	12	27.6
March 8	449	18	28.0
March 26	915	12	76.2
April 7	3,880	43	90.2
May 20	1,920	18	106.7

Table 5. Summary of length data for L. saccharina. Biomass was estimated using the power curve, wt = 0.32 length (1.86). Data for individual algae are given in Appendix 3. Biomass is in grams of wet weight.

Figure 5. Daily increase in biomass of Laminaria saccharina.

Date		n	mean increase (cm)	number of days	mean daily stipe increase (cm)	standard deviation
June 5 - June 13		8	68.5	8	8.6	2.5
June 13- July 11		34	172.6	28	6.1	2.6
July 11- July 28		29	37.3	17	2.2	2.2
July 28- September	8	8	94.6	42	2.3	1.2
May 3- May 17		9	96.4	14	6.9	2.1

Table 6. Summary of stipe growth in <u>Nereocystis</u> <u>luetkeana</u>. Data for each algae are given in Appendix 4.

DATE

Figure 7. Daily stipe elongation of Nereocystis luetkeana.

Table 7. Summary of blade growth data for <u>Nereocystis</u> <u>luetkeana</u>. Data for individual algae are given in Appendix 5. Mean growth is elongation of blades. Biomass is grams of wet wt. tissue as estimated by a power curve (see Methods).

		mean growth	biomass	daily biomass
August	9-24	276.1	4,041	269.1
August	24-September	8 33.1	3,842	255.2

Table 8. Comparison of mean width of L. saccharina from July 7, 1978 and August 16, 1978 at 10 and 20 cm from stipe.

July 7 n = 9mean width at 10 cm 25.3 cm mean width at 20 cm 30.2 cm t = -1.89N.S. July 19 n = 49mean width at 10 cm 21.4 cm mean width at 20 cm 27.6 cm t = 5.09SIG August 16 n = 36mean width at 10 cm 22.8 cm mean width at 20 cm 27.8 cm t = 2.82SIG

4. DISCUSSION

4.1 Evaluation of the Technique

One basic assumption in this study was that the growth of <u>L</u>. <u>saccharina</u> occurred in the first 10 cm of the frond from the stipe. This assumption was based on the work of Parke (1948), Mann (1972, 1973), and others (see Kain, 1976). Parke showed that the greatest growth of <u>L</u>. <u>saccharina</u> occurred in the first 25 cm of the frond. Mann (1972) found that the majority of growth of <u>L</u>. <u>longicuris</u> occurred in the first 10 cm of the frond and he punched holes at that location to follow rates of hole migration. <u>L</u>. <u>longicuris</u> is very similar to <u>L</u>. <u>saccharina</u>. Mann (1972) reported that juveniles of the two species could not be distinguished.

Based on these data, holes were punched at the 10 cm mark for this study. Two kinds of data collected during this study indicate that the assumption that all growth occurs in the first 10 cm is incorrect. First, for three time periods during the study (Table 8), frond width at 10 and 20 cm from the stipe was noted. At two of the three times the mean width at 20 cm was significantly greater (p = 0.05) than at 10 cm. That is, there was a significant increase in blade width that must have occurred as a result of growth beyond the 10 cm mark. Secondly, for observation periods from December 15 to June 7, both blade width and total blade length were recorded (Table 5, Appendix 3). These data show that at least some algae, during the time period of December 4 to June 1, had an increase in total length that was greater than the distance of movement of the punched hole. These data indicate the growth in L. saccharina occurs beyond 10 cm from the stipe.

There is another factor to consider in evaluating these growth data for L. saccharina. Algae release dissolved organic matter during photosynthesis. Sieburth and Jensen (1969) and Khailov and Burlakova (1969) showed that 30-40% of the gross primary productivity of algae in the coastal zone is in the form of dissolved organic matter.

Data on growth of <u>L</u>. <u>saccharina</u> reported in this study must be viewed as conservative estimates of total productivity because they do not consider growth beyond 10 cm, nor the extent of the production of dissolved organic material during photosynthesis.

4.2 Growth in Laminaria saccharina

Given these restraints, the growth rate of <u>L</u>. <u>saccharina</u> showed the species has a distinct growth period with times of virtually no growth (November - January) and that growth is maximum in May and June when individual <u>L</u>. <u>saccharina</u> had a growth of over 100 g of wet weight per day.

Comparison of these values to those of the literature is difficult because most studies give results in productivity per area. For example, Mann (1972) gave a rate of production for L. <u>longicuris</u> of 4.8 g C/m²/day. Other values reported in the literature include: the turtle grass (<u>Thalassia</u>) 5.8 g C/m²/day (Quasim and Bhattatliri, 1971); <u>Cystoseira</u>, 10.5 g C/m²/day (Johnston, 1969); west coast intertidal seaweeds, 20 g C/m²/day (Kanwischer, 1966); <u>Macrocystis</u>, 1.5-2.5 g C/m²/day (Clendenning, 1960); <u>L</u>. <u>hyper borea</u>, 3.4 g C/m²/day (Bellamy et al., 1968); and <u>Zostera marina</u>, 1.59 g dry weight/m²/day (Phillips, 1974). It is likely that the data reported here would yield similar values.

4.3 Other Puget Sound Laminaria Growth Data

Thom et al. (1977) gave values for rate of migration of holes punched 10 cm from the stipe in intertidal L. <u>saccharina</u> at West Point and Lincoln Park, Seattle. For the period of May 26 to June 10 Thom reported daily mean hole migration of 1.3 and 1.8 cm. For intertidal L. <u>saccharina</u> from Shannon Point during this time period mean daily hole migration fell from 1.2 cm per day to 0.6 cm per day. These values were very similar to those calculated in this study; 1.2, 1.2 and 0.6 cm per day (Table 3).

4.4 Nereocystis Stipe Elongation

Data from this study showed that the stipe of <u>Nereocystis luetkeana</u> grew most rapidly in spring (8-9 cm per day) and the rate decreased through the summer (approximately 2 cm per day). Thom et al. (1977) showed that the maximum growth of <u>N</u>. <u>luetkeana</u> from Lincoln Park, Seattle, was in May and June (4.2 cm per day) but that maximum stipe elongation at West Point, Seattle, was in June to August (2.8 cm per day). In general, Thom's values are lower. As well, one of Thom's sites was located adjacent to a sewage outfall (West Beach). The marked seasonal difference in growth of <u>N</u>. <u>luetkeana</u> stipes observed in this study was not apparent in Thom's report.

ACKNOWLEDGMENTS

Acknowledgment is due to those people involved with the often difficult task of collecting data by use of SCUBA--Gary Smith, Ken Dunton, David Gillingham, Rick Yackley and Jim Dougherty. As well, the staff of the Sundquist Marine Laboratory in Anacortes provided boats and support for diving. Finally, Alice Benedict directed laboratory analysis of samples and assisted in summaries of data.

REFERENCES

- Anderson, A. M. 1971. Spawning, growth, and spatial distribution of the geoduck clam Panope generosa. Ph.D. thesis. University of Washington.
- Austin, A., R. Adams, A. Jones, and K. Anders. 1973. Development of a method for surveying red algae resources in Canadian Pacific waters. Annual Report, 1922. B.C. Dept. of Recreation and Conservation, Victoria, B.C.
- Battelle Northwest. 1974. Biological baseline for proposed ARCO refinery. Sequim, Washington.
- Beak. 1975. Oil pollution and the significant biological resources of Puget Sound, a literature review. Beak Consulting, Seattle, Washington.
- Bellamy, D. J., M. John, and A. Whittick. 1968. The kelp forest ecosystem as a phytometer in the study of pollution of the inshore environment. Underwater Assoc. Rep. 79-82.
- Birkland, C. and F. Chia. 1971. Recruitment risk, growth, age, and predation in two populations of sand dollars, <u>Dendraster exentricus</u>. J. Exp. Mar. Biol. Ecol. 6:265-278.
- Birkland, C., F. Chia, and R. Steathmann. 1971. Development, substratum, selection, delay of metamorphosis and growth in the sea star, <u>Mediaster</u> aegualis. Biol. Bull. 141:99-108.
- Bourne, N. and D. W. Smith. 1971. Breeding and growth of the horse clam, <u>Tresus capex</u> in southern British Columbia. Proc. Nat. Shell Fish Association 62:33-46.
- Burns, R. L. and A. C. Mathieson. 1972. Ecological studies of economic red algae: III growth and reproduction of natural and harvested populations of Gigartina stellata. J. Exp. Man. Biol. Ecol. <u>9</u>:77-95.
- Butler, T. H. 1961. Growth and age determination of the Pacific edible crab, Cancer magister. J. Fish Res. Bd. Canada <u>18</u>:873-899.
- Butler, T. H. 1964. Growth, reproduction and distribution of pandalid shrimp in British Columbia. J. Fish. Res. Bd. Canada <u>21</u>:1403-1452.
- Butler, T. H. 1970. Synopsis of biological data on the prawn, <u>Pandalus</u> platyceros. FAO Fish. Reports. <u>57</u>:1289-1315.
- Chan, G. 1972. A study of the effects of the San Francisco oil spill on marine organisms. 78 pp. College of Marin. Kentfield, California.
- Chew, K. K. 1961. The growth of a population of Pacific oysters, <u>Crassostrea</u> <u>gigas</u> when transplanted to three different areas in the state of Washington. Ph.D. thesis, University of Washington, Seattle, Washington.

- Clendenning, K. A. 1960. Organic productivity of giant kelp areas. Kelp Investigation Project. Univ. Calif. Inst. Mar. Res. ref. 60-61, 1-11.
- Collias, E. E. and S. I. Andreeva. 1977. Puget Sound marine environment, an annotated bibliography. 390 pp. Washington Sea Grant Program, Seattle, Washington.
- Coon, L. M. and E. J. Field. 1976. Nootka Sound kelp inventory, 1975. Marine Resources Branch, B.C. Department of Recreation and Conservation, Victoria, B.C.
- Dahlstrom, W. A. 1970. Synopsis of data on the ocean shrimp, <u>Pandalus</u> jordani. FAO Fish Reports 57:1377-1416.
- Dayton, P. K. 1970. Competition, predation and community structure: The allocation and subsequent utilization of space in a rocky intertidal community. Ph.D. thesis. University of Washington, Seattle, Washington.
- DOE. 1977. Washington coastal areas of major biological significance. Washington State Department of Ecology, Olympia, Washington.
- DOE. 1978. Baseline studies of Puget Sound. Washington State Department of Ecology, Olympia, Washington.
- Fallis, A. L. 1915. Growth of the fronds of <u>Nereocystis</u> <u>luetkeana</u>. P. S. Mar. Stat. Publ. <u>1</u>:1-8.
- Fralick, J. E. 1971. Effects of harvesting Iridaea on a sublittoral marine
 plant community in northern Washington. Report to Lummi Aquaculture
 Project, Bellingham, Washington.
- Frye. 1906. Growth of the stipe of <u>Nereocystis</u> <u>luetkeana</u>. Bot. Gazette <u>42:143-146</u>.
- Gallucci, V. F. and J. Hylleberg. 1976. A quantification of some aspects of growth in the deposit feeding bivalve <u>Macoma nasuta</u>. Veliger 19:59-68.
- Goodwin, C. L. 1973. Subtidal geoducks of Puget Sound, Washington. Washington State Department of Fisheries, Technical Report #13. 64 pp. Washington State Department of Fisheries, Olympia, Washington.

Hartge, L. 1928. Nereocystis. P.S. Biol. Stat. Publ. 6:207-237.

- Houghton, J. P. 1973. Intertidal ecology, in Stober, Q. J. and E. O. Salo, editors. Ecological Studies of the Proposed Kiket Island Nuclear Power Site. pp. 119-230. College of Fisheries, University of Washington, Seattle, Washington.
- Hurd, A. M. 1916. Factors influencing the growth and distribution of <u>Nereocystis luetkeana</u>. Publ. Puget Sound Mar. Biol. Stn. 1:185-193.
- Hylleberg, J. and V. F. Gallucci. 1975. Selectivity in feeding by the deposit feeding bivalve, <u>Macoma nasuta</u>. Mar. Biol. 32:167-178.

- Johnston, C. S. 1969. The ecological distribution and primary production of macrophytic marine algae in the Eastern Canaries. Hydrobiologia 54:473-490.
- Kain, J. M. 1976. The biology of <u>Laminaria</u> <u>hyperborea</u> IX growth pattern of the fronds. J. Mar. Biol. Assoc. U.K. 56:603-62.
- Kanwischer, J. W. 1966. Photosynthesis and respiration in some seaweeds. In: Some Contemporary Studies in Marine Science. pp. 407-420. Ed. H. Barnes. London: Allen and Unwin.
- Khailov, K. M. and Z. P. Burlakova. 1969. Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnol. Oceanogr. 14:521-527.
- MacKay, D. C. 1942. The Pacific edible crab, <u>Cancer magister</u>. Bull. Fish. Res. Bd. Canada 62:1-32.
- Mann, K. H. 1972. Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of the seaweeds. Mar. Biol. 14:199-209.
- Mann, K. H. 1973. Seaweeds: Their productivity and strategy for growth. Science 182:975-980.
- Mayer, D. L. 1973. Subtidal ecology in Q. J. and E. O. Solo, eds. Ecological Studies of the Proposed Kiket Island Nuclear Power Site. pp. 259-257. College of Fisheries, University of Washington, Seattle, Washington.
- MESA. 1978. The Puget Sound project. National Oceanographic and Atmospheric Administration, Seattle, Washington.
- Mollet, M. G. 1978. A review of the fisheries biology of abalones. Technical Report no. 37. 81 pp. Washington State Department of Fisheries, Olympia, Washington.
- Moore, S.F., G. R. Chirlin, C. J. Duccia, and B. P. Schrader. 1974. Potential biological effects of hypothetical oil discharges in the Atlantic Coast and Gulf of Alaska. 122 pp. Report to Council on Environmental Quality, M.I.T., Cambridge, Mass.
- Mumford, T. F. 1977. Some biological, legal, social and economic aspects of the culture of the red algae <u>Iridaea</u> <u>cordata</u> on nets in Puget Sound. Use, Study and Management of Puget Sound. Washington State Sea Grant Publication, Seattle, Washington.
- Mumford, T. F. 1978. Growth of Pacific Northwest marine algae on artificial substrates--potential and practice in R. Krauss, ed. The Marine Plant Biomass of the Pacific Northwest Coast. Oregon State University Press, Corvallis, Oregon.

- Nichols, F. H. 1975. Dynamics and energetics of three deposit feeding benthic invertebrate populations in Puget Sound, Washington. Ecological Monographs 45:52-82.
- Nicholson, N. 1970. Field studies on the giant kelp, <u>Nereocystis</u>. J. Phycol. <u>6</u>:177-182.
- Nosho, T. Y., and K. K. Chew. 1971. The settling and growth of the Manila clam Venerupis japonica. Proc. Nat. Shellfish Assoc. 61:11.
- Oceanographic Institute. 1978. Compendium of current environmental studies in Puget Sound and northwest estuarine waters. Oceanographic Institute of Washington, Seattle, Washington.
- Paine, R. T. 1969. Growth and size distribution of the brachiopod, Terebratalia transversa. Pacific Science 23:337-343.
- Parke, M. 1948. Studies on British Laminariacea <u>I</u>. Growth in Laminaria saccharina. Journal Mar. Biol. Assoc. U.K. 27:651-704.
- Phillips, R. C. 1974. Temperate grass flats in H. T. Odum, B. J. Copeland, and E. A. McMahan, eds. Coastal Ecological Systems of the United States Vol. II. pp. 244-299. Conservation Foundation, Washington, D.C.
- Prentice, E. F. 1971. Respiration and thermal tolerance of the Dungeness crab <u>Cancer magister</u>. M.S. thesis. WWU, Bellingham, Washington.
- Qualye, D. B. 1971. Growth, morphometry and breeding in the British Columbia abalone, <u>Haliotis</u> <u>kamtschatkana</u>. Fish. Res. Bd. Canada, Tech. Report #279.
- Qualye, D. B. and N. Bourne. 1972. The clam fisheries of British Columbia. Fish. Res. Bd. of Canada Bull. 179. 700 pp.
- Quasim, S. Z., and P. M. Bhattatliri. 1971. Primary productivity of seagrass bed on Kavarath Atoll. Hydrobiologica 38:29-38.
- Rigg, G. B. 1915. The kelp beds of Puget Sound. U.S. Department of Agriculture Report 100:50-59.
- Scagel, R. F. 1947. An investigation of marine plants near Hardy Bay, B.C. Provincial Department of Fisheries no. 1. 70 pp. Victoria, B.C.
- Sheldon, S. M. 1915. Notes on the growth of the stipe of <u>Nereocystis</u> <u>luetkeana</u>. Puget Sound Mar. Stat. Publ. 1:15-18.
- Sieburth, J., and A. Jensen. 1969. Studies on algae substances in the sea, III. The production of extracellular organic matter by littoral marine algae. J. Exp. Mar. Biol. Ecol. 3:290-309.
- Swan, E. F. 1952. The growth of the clam Mya arenaria as affected by the substratum. Ecology <u>33</u>:530-534.

- Thom, R. M., J. W. Armstrong, C. P. Staude, and K. K. Chew. 1977. Impact of sewage on benthic marine flora of the Seattle area in The Use Study and Management of Puget Sound. Wash. Sea Grant Publ. WSG-WO-77-1. pp. 200-220.
- Trumble, R. J. 1973. Distribution, relative abundance and general biology of selected underutilized fisheries resources of the eastern North Pacific. M.S. thesis. University of Washington, Seattle, Washington.
- Vadas, R. L. 1972. Ecological implications of culture studies on <u>Nereocystis</u> <u>luetkeana</u>. J. of Phycol. <u>3</u>:196-203.
- Waalund, J. R. 1974. Experimental studies on the marine algae Iridaea and Gigartina. J. Exp. Mar. Biol. Ecol. <u>11</u>:71.

	May 2	5-June 7			June 7-June 21				June 21-July 5				
Tag No.	Width 10 cm	cm elonga- tion	Area	Tag No.	Width 10 cm	cm elonga- tion	Area	Tag No.	Width 10 cm	cm elonga- tion	Area		
3	7	12	84	3	7	6	42	9	13	15	195		
4	19	14	266	4	20	13	260	11	14	6	84		
6	15	18	270	6	17	16	272	13	14	2	182		
8	8	10	80	8	11	13	143	18	16	2	288		
11	13	31	403	9	13	35	455	20	27	11	297		
12	13	27	351	12	10	34	340	27	15	10	150		
13	19	14	266	13	22	14	308						
14	14	28	392	14	17	21	357						
16	25	6	150	15	15	23	345						
17	15	6	90	16	15	6	90						
20	21	13	273	18	15	14	210						
23	14	6	84	20	24	17	408						
				27	15	10	150						

Appendix 1. Tag number, width at 10 cm, hole elongation (cm), and area (elongation x width at 10 cm) for intertidal <u>L</u>. <u>saccharina</u>.

Append.	ix	2.	Tag	number	, widtl	h at	10	CII	(M10),	hole	elongation	in	cm	pul á	irea	(elongation)	X W.	idth
at 10	cm)	for	sub	tidal]	L. Sac	char:	ina.											

Appendix 2--continued

	59	00	62	20	35	90	8	38	24	34	00	30	0
(28d)	Are		2.7	2,	T	01	34	2(1.5	36	20	18	
1g. 16 (cm growth	5	6	10	6	2	12	16	11	16	10	10	0
19-A1	fidth 0 cm	12	31	22	15	18	29	13	14	24	20	18	18
July	Tag W No. 1	73	75	76	77	78	80	81	83	84	85	86	31
	Area	176	210	207	209	161	198	51	72	0	48	69	
(12d)	cm growth	11	10	6	11	7	11	c	4	0	4	З	
July 7-1	Width 10 cm	16	21	23	19	23	18	17	18	30	12	23	
.,	Tag No.	64	65	99	67	68	69	70	71	72	73	74	
0	Area												
.y 7 (9d	cm growth												
e 28-Jul	Width 10 cm												
June	Tag No.												
	Area	375	168	90									
-28 (12d)	cm growth	15	8	5									
June 16-	Width 10 cm	25	21	18									
	Tag No.	45	46	48									

continued

35

	0ct. 6-	Tag Width	No. 10 cm
	9		Area
	20-0ct.	СШ	growth
	Sept.	Width	10 cm
		Tag	No.
ed	0		Area
continu)-Sept. 2	cm	growth
endix 2-	Aug. 30	Width	10 cm
App		Tag	No.

HathcmTageWatchcmTageWatchcmTageWatchcmTageWatchcmTageWatchcmTageWatchcmTageWatchCmCmStrongCmStrongCmStrong	Aug	30-5	Sept. 20	C		Sept.	20-0ct.	9		Oct. 6-(Jct. 27		0	ct. 2	7-Nov. 14	
	PI	cm g1	cm rowth	Area	Tag No.	Width 10 cm	cm growth	Area	Tag No.	Width 10 cm	cm growth	Area	Tag Wo. 1	/idth 0 cm	cm growth	Area
		۲٦	1	17	51	23	4	92	51	21	4	84	51	21	1	21
		20	10	200	63	27	0	0	54	21	1	21	54	21	0	0
30 11 330 151 11 121 151 151 16 17 16 128 15.	• •	27	5	135	150	15	0	0	150	15	0	0	127	12	0	0
	. ,	30	11	330	151	11	11	121	151	10	7	70	128	12	1.5	18
		20	ю	60	152	14	11	154	152	13	5	69	129	11	0	0
		15	2	75	153	13	10	130	153	13	4	52	130	11	1	11
		11	20	220	154	12	11	132	154	11	00	88	131	10	1	10
	, ,	14	26	364	156	14	S	42	156	13	2	26	132	21	0	0
		14	23	322	157	20	2	40	157	22	2	77	133	39	0	0
		11	16	176	159	14	8	112	158	14	10	140	134	21	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	7	98	160	13	9	78	159	12	2	24	135	24	0	0
		20	2	40	161	16	7	112	160	12	T	12	136	22	0	0
		14	21	294	162	13	15	195	161	14	5	70	150	16	0	0
		13	15	195	163	15	S	45	162	13	4	52	151	10	1	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17	16	272	164	25	1	25	163	14	ŝ	42	152	13	0	0
		13	6	117	166	19	1	19	165	12	5	60	153	13	0	0
19 0 0 167 17 4 68 13 0 0 10 19 5 95 175 19 0 128 12 5 60		16	00	128	168	19	1	19	166	18	I	18	154	11	2	22
19 5 95 175 19 0 0 158 12 5 60		19	0	0					167	17	4	68	156	13	0	0
		19	5	95					175	19	0	0	158	12	5	60

ě
7
F
Dt
0
C
à
×
T
ŭ
C
d
Ap
4

	Area	0	0	0	0	0	21
7-Nov. 1	cm growth	0	0	0	0	0	1
Jct. 27	Width 10 cm	15	13	15	18	19	21
	Tag INo.	161	162	163	166	168	50
	Area						
-Oct. 27	cm growth						
0ct. 6	Width 10 cm						
	Tag No.						
	Area						
0-0ct. 6	cm growth						
Sept. 20	Width 10 cm						
	Tag No.						
0	Area						
0-Sept. 2	cm growth						
Aug. 31	Width 10 cm						
	Tag No.						

continued

idth imth imth </th <th>NOV. 14-D</th> <th>ec. 1</th> <th></th> <th></th> <th>JOL - A</th> <th>1</th> <th></th> <th></th> <th>Dec. T.</th> <th>D-Jall. U</th> <th></th> <th></th> <th></th> <th></th> <th></th>	NOV. 14-D	ec. 1			JOL - A	1			Dec. T.	D-Jall. U					
22 0 54 21 1 21 127 21 12 21 </th <th>dth ci cm gro</th> <th>m wth</th> <th>Area</th> <th>Tag No.</th> <th>Width (10 cm gro</th> <th>cm owth</th> <th>Area</th> <th>Tag No.</th> <th>Width 10 cm</th> <th>cm growth</th> <th>Area</th> <th>Tag No.</th> <th>Width 10 cm</th> <th>cm growth</th> <th>Area</th>	dth ci cm gro	m wth	Area	Tag No.	Width (10 cm gro	cm owth	Area	Tag No.	Width 10 cm	cm growth	Area	Tag No.	Width 10 cm	cm growth	Area
20 0 127 12 1.0 12 128 12 1	22	0	0	54	21	1	21	127		2		127	6	0	0
12 0 128 12 2 24 129 10 130 8 1 8 11.2 0 0 139 10 0 130 11 7 0 0 10.5 0 130 11 1 11 131 7 10 0 0 10.5 0 130 11 1 11 131 14 13 7 0 0 10.6 3 27 132 23 13 135 135 135 135 13 13 20 0 134 21 12 12 13 14 1 14 1 14 1 14 1 14	20	0	0	127	12	1.0	12	128		0		129	6	0	0
12.2 0 120 10 0 30 130 7 0 0 10.5 0 130 11 1 1 11 <td>12</td> <td>0</td> <td>0</td> <td>128</td> <td>12</td> <td>2</td> <td>24</td> <td>129</td> <td></td> <td>0</td> <td></td> <td>130</td> <td>80</td> <td>1</td> <td>80</td>	12	0	0	128	12	2	24	129		0		130	80	1	80
10.5 0 0 130 11 1 131 4 135 25 0 0 10.8 3 2 131 9.0 12 108 132 14 1	12.2	0	0	129	10	0	0	130		5		131	7	0	0
	10.5	0	0	130	11	1	11	131		4		135	25	0	0
9 3 27 132 23 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 14 13 135 135 14 13 135 14 14 13 135 14 14 14 14 14 14 14 14 14 13 157 13 15 14 15 14 15 14 14 14 14 14 14 14 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 1	10.8	ŝ	32	131	0.0	12	108	132		I		161	14	1	14
22 0 134 21 0 158 6 20 0 135 26 0 161 2 26 0 151 10 1 10 2 10 2 20 135 26 163 1 13 1 13 13 2 26 166 3 13 1 13 157 13 2 26 166 3 13 1 13 157 13 2 26 3 10 2 20 13 2 26 3 3 13 157 13 2 26 3 3 13 0 16 18 1 18 3 13 0 16 18 1 18 3 14 0 16 1 18 3 3 14 0 1	6	З	27	132	23	1	23	135		0		163	6	Т	6
20 0 135 26 0 161 2 26 0 151 10 1 10 153 1 10 2 20 152 13 2 26 166 3 13 1 13 157 13 2 26 166 3 13 1 13 13 1 13 3 10 2 20 13 2 26 3 15 13 13 2 26 3 3 15 13 2 2 26 3 3 15 13 2 2 26 5 5 13 0 16 18.0 1 18 1 18 13 0 16 16 1 18 1 1 14 0 16 1 1 18 1 1 <tr< td=""><td>22</td><td>0</td><td>0</td><td>134</td><td>21</td><td>0</td><td>0</td><td>158</td><td></td><td>9</td><td></td><td></td><td></td><td></td><td></td></tr<>	22	0	0	134	21	0	0	158		9					
26 0 151 10 1 10 163 1 10 2 20 152 13 2 26 166 3 13 1 13 153 13 2 26 166 3 13 1 13 157 13 2 26 3 10 2 13 2 26 26 3 13 13 13 2 26 3 3 13 0 166 18.0 1 18 1 18 13 0 165 14 2 26 3 1 14 0 16 14 2 28 1 1 14 0 0 156 1 2 28 1 14 0 0 1 2 28 1 1 14 0 1 2 28 <td>20</td> <td>0</td> <td>0</td> <td>135</td> <td>26</td> <td>0</td> <td>0</td> <td>161</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	20	0	0	135	26	0	0	161		2					
10 2 20 152 13 2 26 166 3 13 1 13 153 13 1 13 13 1 13 157 13 2 26 10 2 20 162 13 2.0 26 15 0 16 13 2.0 26 13 0 16 18.0 1 18 13 0 16 18.0 1 18 13 0 0 163 1 15 14 0 0 156 1 15 14 0 0 1 2 28 15 1 2 28 2 28 14 0 0 156 1 2 28 15 1 2 28 2 28 2 15 1 2 28 <t< td=""><td>26</td><td>0</td><td>0</td><td>151</td><td>10</td><td>Т</td><td>10</td><td>163</td><td></td><td>П</td><td></td><td></td><td></td><td></td><td></td></t<>	26	0	0	151	10	Т	10	163		П					
13 1 13 13 1 13 13 1 13 157 13 2 26 10 2 20 162 13 2.0 26 13 0 0 166 18.0 1 18 13 0 163 15 1 18 13 0 163 15 1 18 13 0 163 15 1 15 14 0 156 14 2 28 19 0 0 156 14 2 19 0 0 15 1 15	10	2	20	152	13	2	26	166		e					
13 1 13 157 13 2 26 10 2 20 162 13 2.0 26 15 0 0 166 18.0 1 18 13 0 0 163 15 1 18 13 0 163 15 1 15 14 0 156 14 2 28 15 0 0 16 14 2 28 16 0 0 156 14 2 28 16 0 0 156 14 2 28 19 0 0 0 1 1 1	13	1	13	153	13	Г	13								
10 2 20 162 13 2.0 26 15 0 0 166 18.0 1 18 13 0 0 163 15 1 15 14 0 0 156 14 2 28 19 0 0 1 1 1 1	13	Ч	13	157	13	2	26								
15 0 166 18.0 1 18 13 0 0 163 15 1 15 13 0 0 156 14 2 28 14 0 0 1 2 28 19 0 0 1 1 1	10	2	20	162	13	2.0	26								
13 0 163 15 1 15 13 0 0 156 14 2 28 14 0 0 1 2 28 19 0 0 1 1 1	15	0	0	166	18.0	1	18								
13 0 0 156 14 2 28 14 0 0 0 1 </td <td>13</td> <td>0</td> <td>0</td> <td>163</td> <td>15</td> <td>г</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	13	0	0	163	15	г	15								
14 0 0 19 0 0	13	0	0	156	14	2	28								
19 0 0	14	0	0												
	19	0	0												

Appendix 2--continued

	Jan. 2	5-Feb. 3			Feb. 8	-Feb. 24			Feb. 2	4-Mar. 8		×	N-8	36 26	
Tag No.	Width 10 cm	cm growth	Area	Tag No.	Width 10 cm	cm growth	Area	Tag No.	Width 10 cm	cm growth	Area	Tag No.	Width 10 cm	cm cm growth	Area
54	16	0	0	127	14	10	140	127	18	21	378	127	19	16	304
127	6	1	6	129	6	10	90	129	12	7	84	129	17	14	238
129	6	2	18	130	13	16	208	130	13	7	16	130	19	36	684
130	11	6	66	131	6	14	126	131	14	14	196	131	19	20	380
131	6	7	63	137	14	18	252	134	20	11	220	134	25	14	350
137	14	13	182	138	16	18	288	137	15	15	225	135	23	12	276
138	14	10	140	139	16	14	224	138	17	13	221	136	19	17	323
139	11	10	110	140	12	13	156	139	17	13	221	137	21	20	420
140	8	9	48	141	14	14	196	140	12	13	221	138	23	14	322
142	14	8	112	142	13	21	273	141	12	10	120	140	28	14	392
143	12	6	108	143	14	16	224	142	12	10	120	141	17	12	204
144	12	11	132	145	6	8	72	143	13	11	143	143	13	17	221
147	13	10	130	147	16	20	320	147	19	18	342	154	20	19	380
148	14	10	140	148	17	14	238	148	16	15	240	161	17	16	272
161	14	8	112	149	11	11	121	149	12	10	120	178	27	13	351
163	14	ç	42	154	14	11	154	154	15	13	195	182	17	13	221
166	12	5	60	161	17	26	442	161	11	16	176	184	12	16	192
												185	19	26	494
												186	16	24	384
												187	30	17	510
														continu	led

39

Appendix 2--continued

	Mar. 20	6-April 7			April	7-May 20			May 20)-June 7	
Tag No.	Width 10 cm	cm growth	Area	Tag No.	Width 10 cm	cm growth	Area	Tag No.	Width 10 cm	cm growth	Area
127	16	25	400	127	20	53	1,060	127	18	27	486
129	18	19	342	129	24	62	1,488	129	19	28	532
131	13	34	442	131	20	124	2,480	131	20	32	640
134	23	30	690	137	25	109	2,725	140	22	33	726
135	27	15	405	139	30	64	1,920	141	21	23	483
137	15	35	525	140	22	194	4,268	142	19	32	608
138	21	37	777	141	17	40	680	147	18	20	360
139	19	30	570	142	21	39	819	154	16	26	416
140	16	37	592	143	21	24	504	175	22	33	726
141	14	27	378	145	18	135	2,430	176	24	26	624
143	14	33	462	154	20	123	2,460	178	23	34	782
154	21	31	651	175	14	151	2,114	180	22	47	1,034
161	16	23	368	176	26	131	3,406	182	25	48	1,200
162	16	16	256	178	39	38	1,482	185	22	39	858
178	25	21	525	180	20	161	3,220	196	19	31	585
182	6	21	189	182	26	97	2,522				
184	22	20	440								
185	18	32	576								
186	17	35	595								
187	27	38	1,026								

Appendix 2--continued

De	ec. 1	D	ec. 15	Ja	an. 6	Ja	an. 25
Tag No.	Length	Tag No.	Length	Tag No.	Length	Tag No.	Length
51	234	54	89	51	211	54	70
54	76	127	50	127	49	127	49
127	63	123	79	128	27	129	24
128	82	129	81	129	80	130	63
129	88	130	85	130	84	131	40
130	84	131	71	131	65	134	113
131	71	132	129	132	120	135	115
132	130	134	112	135	114	137	58
134	113	135	110	158	115	138	58
135	121	151	54	161	177	139	48
136	190	152	82	163	59	140	21
151	57	153	88	166	105	141	47
152	110	156	95			142	101
153	96	158	115			143	79
154	51	161	185			144	44
156	110	102	47			145	11
158	120	163	60			146	10
162	50	166	101			147	70
165	85	16	33			148	61
166	80					161	68
						163	35
						165	87
						127	2

Appendix 3. Tag number and total frond length for subtidal \underline{L} . saccharina.

continued

Fe	eb. 24	Ma	ar. 8	Ма	ur. 26
Tag No.	Length	Tag No.	Length	Tag No.	Length
54	14	127	70	127	59
127	62	129	51	129	56
129	46	130	109	130	194
130	87	131	78	131	146
131	62	134	132	134	85
137	83	137	102	135	60
138	87	138	108	137	170
139	73	139	87	138	62
140	37	140	51	139	148
141	225	141	154	140	106
142	61	142	72	141	161
143	105	143	123	143	212
145	23	147	113	154	111
147	91	148	107	161	101
148	90	149	41	162	52
149	31	154	48	175	68
154	37	161	97	176	99
161	133	178	118	178	129
		182	36	182	53
		184	19	184	40
		185	42	185	103
		186	45	186	116
		187	78	187	89
				189	55

Appendix 3--continued

continued

Appendix 3--continued

Apr. 7		May 20		June 7		
Tag' No.	Length	Tag No.	Length	Tag No.	Length	
127	94	127	143	127	148	
129	63	129	125	129	122	
131	120	130	295	131	200	
132	142	131	244	140	264	
134	130	137	254	141	192	
135	49	139	187	142	130	
137	146	140	258	147	227	
138	159	141	196	154	235	
139	123	142	141	175	223	
140	64	143	199	176	232	
141	156	145	198	178	171	
142	102	147	232	180	153	
143	174	154	203	182	218	
145	63	175	192	185	176	
154	80	176	216	196	141	
161	62	178	158	28	32	
162	38	180	138			
166	95	182	191			
175	42	185	170			
176	84	196	92			
178	120	197	183			
182	29					
184	33					
185	73					
186	84					
187	117					
189	32					
190	31					

June 5-J	June 13	June 13-	July 11	July 11-	July 28	July 28-	-Sept. 8	May 3-Ma	y 17
303	70	300	152	302	87	303	96	198	91
305	31	302	174	303	79	305	59		
311	53	303	179	304	88	311	43		
312	88	304	301	305	50	337	162		
315	85	305	105	306	31	339	180		
319	69	307	148	307	40	353	51		
322	88	308	169	308	56	357	90		
339	63	310	121	310	37	358	76		
		311	210	311	49				
		313	105	313	59				
		314	119	314	37				
		315	266	216	72				
		316	316	321	14				
		313	257	324	26				
		319	143	325	23				
		321	64	328	69				
		322	189	329	3				
		323	19	335	49				
		324	323	337	77				
		511	515	340	50				
				342	34				
		323	116	347	69				
		328	125	348	26				
		329	240	350	40				
		335	205	351	33				
		336	101	353	56				
		227	150	255	50				
		227	152	355	55				
		339	1//	357	45				
		340	154	358	35				
		347	183						
		350	171						
		351	103						
		353	176						
		355	158						
		357	251						
		351 353 355 357 358	103 176 158 106 251						

Appendix 4. Tab number and stipe elongation (cm) for <u>Nereocystis</u> <u>luetkeana</u>

	Aug. 8-	24		Aug. 24-Sep	t. 8
Tag No.	Total length	Total elongation	Tag No.	Total length	Total elongation
361	1,420	235	361	1,131	43
362	11,523	428	362	7,989	19
364	6,009	219	366	3,112	19
365	3,530	151	367	2,849	81
366	2,013	336	369	5,986	4
367	3,882	326	370	5,458	20
368	5,464	121	372	921	29
369	5,522	263	374	3,294	50
370	6,445	261			
371	14,265	421			

Appendix 5. Tag number, total length of fronds (cm), total hole migration (cm) for <u>Nereocystis luetkeana</u>.